Excited baryons in the large N_C limit

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Excited baryons in the large N_c limit

N. Matagne

University of Mons

May 19, 2011

in collaboration with Fl. Stancu

Outline

- Motivation
- 2 Large N_c QCD
- The Baryon Structure
- 4 Excited States I
- 5 Excited States II
- **6** Status of $\Lambda(1405)$

Conclusions

Motivation

- Traditional issues to study baryons: effective theories and constituent quark models
- The $1/N_c$ expansion is a **new theoretical method** (1993)
 - Systematic
 - Valid for the whole energy region
 - Model independent
 - Predictive
 - Gives support to constituent quark models
 - Used to study baryon masses, magnetic moments, axial currents, decay widths

Large N_c QCD

• 't Hooft suggested to generalize QCD to N_c colors [1] in the limit $\frac{g}{\sqrt{N_c}} \to 0, \ g$ fixed when $N_c \to \infty$

Diagram of order $\mathcal{O}(1)$

- Witten : Large N_c power counting rules for Feynman diagrams [2]
 The leading Feynman diagrams are planar and contain a minimum number of quark loops
- [1] G. 't Hooft, Nucl. Phys. 72, 461 (1974).
- [2] E. Witten, Nucl. Phys. B160, 57 (1979).

Mesons in large N_c QCD

$$|1\rangle_c = \frac{1}{\sqrt{N_c}} \underbrace{\left(\bar{l}l + \bar{m}m + \ldots + \bar{n}n\right)}_{N_c \text{ terms}}$$

Large N_c mesons are stable and non-interacting

Baryons in large N_c QCD

$$\varepsilon_{i_1i_2i_3\cdots i_{N_c}}q^{i_1}q^{i_2}q^{i_3}\cdots q^{i_{N_c}}$$

bound states of N_c valence quarks completely antisymmetric in color because baryons are colorless

Baryon mass grows with N_c

<ロ> (日) (日) (日) (日) (日)

Baryon weight diagrams

For $N_c = 3$ pn Λ^{-} $\Lambda^+ \Lambda^{++}$ Λ^0 $\Sigma^{*-} = \Sigma^{*0} = \Sigma^{*+}$ $\Sigma^- \quad \Lambda, \Sigma^0 \quad \Sigma^+$ 三*- 三*0 Ξ^{-} Ξ^0 Ω^{-} For large N_c \$ 2 1 1234321 122221 12344321 1234443 12222 122222 1234444321 122222 1233333 12222222 1222221 1111111111 1111111

Familiar $N_c = 3$ baryons can be identified with states at the top of the flavor representations

Exact $SU_f(3)$: all particles in each weight diagram have the same mass when $m_u = m_d = m_s$

Exact SU(6) : all the particles have the same mass

Baryon-meson scattering amplitude

baryon + meson \rightarrow baryon + meson $\sim \mathcal{O}(1)$

 $[X_0^{ia}, X_0^{jb}] = 0$, consistency condition for unitarity

 \Rightarrow SU(2 N_f) contracted is an exact symmetry in $N_c \rightarrow \infty$ limit [3,4]

 \Rightarrow Infinite tower of degenerate baryon states

 ${\rm SU}(2N_f)_c$ symmetry realized at $N_c\to\infty$ by Skyrme model and non-relativistic quark model

[3] J.-L. Gervais and B. Sakita, Phys. Rev. Lett. 52, 87 (1984); Phys. Rev. D30, 1795 (1984).

[4] R. Dashen and A. V. Manohar, Phys. Lett. B315, 425 (1993).

SU(6) symmetry of non-relativistic quark model exact in the large N_c limit for ground state baryons

Assumed SU(6)×O(3) for excited states to include $\ell \neq 0$

 $SU(2N_f)$ generators

$$S^{i} = q^{\dagger}(S^{i} \otimes \mathbb{1})q \quad (3,1)$$

$$T^{a} = q^{\dagger}(\mathbb{1} \otimes T^{a})q \quad (1, \text{adj})$$

$$G^{ia} = q^{\dagger}(S^{i} \otimes T^{a})q \quad (3, \text{adj})$$

SO(3) generators (excited states)

$$\ell^i = q^{\dagger} \ell^i q \quad (3)$$

イロン イヨン イヨン イヨン

 $1/N_c$ expansion of a static QCD 1-body operator (baryon mass, axial vector current, magnetic moment) transforming according to a given SU(2)×SU(N_f) representation

$$\mathcal{O}_{\text{QCD}}^{1-\text{body}} = \sum_{n} \frac{1}{N_c^{n-1}} c_n O^n, \quad O^n = O_\ell \cdot O_{SF}$$

where O_{ℓ} and O_{SF} are expressed in terms of products of SO(3) and SU(2N_f) generators

[5] R. Dashen, E. Jenkins and A. V. Manohar, Phys. Rev. D51, 3697 (1995).

The Baryon Structure

The total wave function of baryons Ψ

$$\Psi = \psi_{lm} \, \chi \, \phi \, C$$

 ψ_{lm} , χ , ϕ and C are the orbital, spin, flavor and color parts

Steps in forming SU(6) \times O(3) symmetric wave functions for low excitations and $N_c = 3$

SU(3)		SU(2)	SU(6)		O(3)	$SU(6) \times O(3)$
10		3			$2^{+}_{2}S$	$[56, 2^+]$
10	~	2	56	×	$0^{+}_{2}s$	$[56', 0^+]$
8	×	12			0_+ s	$[56, 0^+]$
10	×	$\frac{1}{2}$			a±14	(70 a±1
8	×	3			² 2 ^M	[70, 2]
8	×	1	70	×	$0^+_2 M$	$[70, 0^+]$
1	ç	2 1			$1^{-}_{1}M$	[70 , 1 ⁻]
1	^	1				
8	×	12	20	×	$1^+_{2}A$	$[20, 1^+]$
1	×	$\frac{3}{2}$	-		2	r - x - 1

Baryon spectrum

SU(6) notation: $[\mathbf{X}, l^P]$, $N_c = 3$

$$N = 4 \qquad [56, 4^+] \qquad 2 - 3 \text{ GeV}$$

$$\vdots \qquad [20, 1^+] \\ [70, 2^+] \\ [56, 2^+] \\ [70, 0^+] \\ [56', 0^+] \qquad \sim 2 \text{ GeV}$$

$$N = 1 \qquad [70, 1^-] \qquad \sim 1.5 \text{ GeV}$$

$$N = 0 \qquad [56, 0^+] \qquad 0.94 \text{ GeV}$$

N. Matagne (University of Mons)

イロン イロン イヨン イヨン

Excited States I

First approach [6]

- Witten's suggestion: Hartree approximation in $N_c
 ightarrow \infty$ limit
 - Each quark moves in an average potential generated by the other $N_c-1 \ {\rm quarks}$
 - \bullet Total potential experienced by each quark is of order $\mathcal{O}(1)$
 - Interaction between any given pair of quarks of order $\mathcal{O}(1/N_c)$
- Low excitations: baryons composed of $\mathcal{O}(N_c)$ ground-state quarks (the core) and $\mathcal{O}(1)$ excited quarks
- The core quarks are described by symmetric wave functions in both orbital and spin-flavor parts as ground-state baryons
- Excited quark coupled to a symmetric ground state core

```
[6] J.L. Goity, Phys. Lett. B414, 140 (1997).
```

Extensively applied to $[70, 1^-]$ baryon : ground state core made of $N_c - 1$ quarks + one excited quark (2 flavors [7], 3 flavors [8])

$$S^{i} = s^{i} + S^{i}_{c}; \ T^{a} = t^{a} + T^{a}_{c}; \ G^{ia} = g^{ia} + G^{ia}_{c}$$

Wave function :

$$\begin{split} |\ell S; JJ_3; (\lambda \mu) Y II_3 \rangle &= \sum_{\substack{m_{\ell}, S_3, m_1, m_2, \\ Y_c, I_c, I_{c_3}, y, i, i_3}} \begin{pmatrix} \ell & S & | & J \\ m & S_3 & | & J_3 \end{pmatrix} \\ &\times & \sum_{pp'} c_{pp'}^{[N_c - 1, 1]}(S) \begin{pmatrix} S_c & \frac{1}{2} & | & S \\ m_1 & m_2 & | & S_3 \end{pmatrix} \begin{pmatrix} (\lambda_c \mu_c) & (10) & | & (\lambda \mu) \\ Y_c I_c I_{c_3} & y i i_3 & | & Y II_3 \end{pmatrix} \\ &\times & |S_c m_1\rangle |1/2m_2\rangle |(\lambda_c \mu_c) Y_c I_c I_{c_3}\rangle |(10) y i i_3\rangle |\ell m\rangle \end{split}$$

 $c_{pp'}^{[\mathrm{N}_c-1,1]}(S)$ are isoscalar factors of S_{N_c}

[7] C.E. Carlson, C.D. Carone, J.L. Goity and R.F. Lebed, Phys. Rev. D59, 114008 (1999).
 [8] J.L. Goity, C.L. Schat and N.N. Scoccola, Phys. Rev. D66, 114014 (2002).

N. Matagne (University of Mons)

< ≧ > ≧ √ < (* May 19, 2011 13 / 26

イロン イヨン イヨン イヨン

Has also been applied to $[{\bf 70},\ell^+]~(\ell=0,2)$ [9] Mass operator

$$M_{[\mathbf{70},\ell^+]} = \sum_{i=1}^6 c_i O_i + \sum_{j=1}^4 d_j B_j$$

Fitted coef. (MeV)						
$c_1 =$	556	±	11			
$c_2 =$	-43	\pm	47			
$c_3 =$	-85	\pm	72			
$c_{5} =$	253	\pm	57			
$c_{6} =$	-25	±	86			
$d_1 =$	365	\pm	169			
$d_2 =$	-293	\pm	54			
	Fitte $c_1 = c_2 = c_3 = c_5 = c_6 = d_1 = d_2 = d_2$	Fitted coef. $c_1 =$ 556 $c_2 =$ -43 $c_3 =$ -85 $c_5 =$ 253 $c_6 =$ -25 $d_1 =$ 365 $d_2 =$ -293	Fitted coef. (MeV) $c_1 =$ 556 \pm $c_2 =$ -43 \pm $c_3 =$ -85 \pm $c_5 =$ 253 \pm $c_6 =$ -25 \pm $d_1 =$ 365 \pm $d_2 =$ -293 \pm			

$$\chi^2_{\rm dof} = 1.0$$

N. Matagne (University of Mons)

 $[\mathbf{70},1^-]$ non-strange baryons : the three towers of states [10], [11]

For $N_c \ge 5, I \leqslant 3/2$, 13 states : $N_{1/2}, N'_{1/2}, N_{3/2}, N'_{3/2}, N_{5/2}, \Delta_{1/2}, \Delta'_{1/2}, \Delta_{3/2}, \Delta'_{3/2}, \Delta''_{3/2}, \Delta''_{5/2}, \Delta''_{5/2}, \Delta''_{7/2}$

Considering H of order up to $\mathcal{O}(N_c^0)$,

$$H = c_1 N_c + c_2 \ell \cdot s + \frac{1}{N_c} \ell^{(2)} \cdot g \cdot G_c$$

Diagonalize it in the basis of the 13 states ⇒ Observe a pattern of denegeracy

$$\begin{split} N_{1/2}, \Delta_{3/2} \quad (m_0) \\ N_{1/2}', \Delta_{1/2}, N_{3/2}, \Delta_{3/2}', \Delta_{5/2} \quad (m_1) \\ \Delta_{1/2}', N_{3/2}', \Delta_{3/2}'', N_{5/2}, \Delta_{5/2}', \Delta_{7/2}'' \quad (m_2) \end{split}$$
 ding to $|I - I| \leq K$

according to $|I - J| \leq K$

[10] T. Cohen and R.F. Lebed, Phys. Rev. D67, 096008 (2003).

[11] D. Pirjol and C. Schat, Phys. Rev. D67, 096009 (2003).

Excited States II

Second approach

• A totally symmetric orbital-spin-flavor state

$$\Phi_{S} = \frac{1}{\sqrt{N_{c} - 1}} \sum_{Y} |[N_{c} - 1, 1]Y\rangle_{O}|[N_{c} - 1, 1]Y\rangle_{SF}$$

• As $S_c = I_c$, in the decoupling picture, information on isospin is lost

Matrix elements of the spin-spin and isospin-isospin operators with the exact and the approximate wave function

	$\langle s \cdot$	$S_c \rangle$	$\langle S_c^2 \rangle$			
	approx. w.f.	exact w.f.	approx. w.f.	exact w.f.		
² 8	$-rac{N_c+3}{4N_c}$	$-\tfrac{3(N_c-1)}{4N_c}$	$\frac{N_c+3}{2N_c}$	$\tfrac{3(N_C-1)}{2N_C}$		
⁴ 8	$\frac{1}{2}$	$-\tfrac{3(N_c-5)}{4N_c}$	2	$\tfrac{3(3N_c-5)}{2N_c}$		
² 10	-1	$-\tfrac{3(N_c-1)}{4N_c}$	2	$\frac{3(N_C-1)}{2N_C}$		

	$\langle t \cdot \cdot$	$T_c \rangle$	$\langle T_c^2 \rangle$			
	approx. w.f.	exact w.f.	approx. w.f.	exact w.f.		
² 8	$-\frac{N_c+3}{4N_c}$	$-rac{3(N_c-1)}{4N_c}$	$\frac{N_c+3}{2N_c}$	$\tfrac{3(N_C-1)}{2N_C}$		
⁴ 8	-1	$-\tfrac{3(N_c-1)}{4N_c}$	2	$\tfrac{3(N_c-1)}{2N_c}$		
² 10	$\frac{1}{2}$	$-\frac{3(N_c-5)}{4N_c}$	2	$\frac{3(3N_c-5)}{2N_c}$		

<ロ> (日) (日) (日) (日) (日)

Results of the fits (nonstrange baryons)

• Only with the 7 resonances: ${}^2N_{1/2}(1538 \pm 18)$, ${}^4N_{1/2}(1660 \pm 20)$, ${}^2N_{3/2}(1523 \pm 8)$, ${}^4N_{3/2}(1700 \pm 50)$, ${}^4N_{5/2}(1678 \pm 8)$, ${}^2\Delta_{1/2}(1645 \pm 30)$ and ${}^2\Delta_{3/2}(1720 \pm 50)$

Fit 1

Operator		Approx. w.f. (MeV)	Exact w.f. (MeV)
$O_1 = N_c 1\!\!1$	$c_1 =$	211 ± 23	299 ± 20
$O_2 = \ell^i s^i$	$c_2 =$	3 ± 15	3 ± 15
$O_3 = \frac{1}{N_c} s^i S_c^i$	$c_3 =$	-1486 ± 141	-1096 ± 125
$O_4 = \frac{1}{N_c} S_c^i S_c^i$	$c_4 =$	1182 ± 74	1545 ± 122
$O_5 = \frac{1}{N_c} t^a T_c^a$	$c_{5} =$	-1508 ± 149	417 ± 79
$\chi^2_{ m dof}$		1.56	1.56

<ロ> (日) (日) (日) (日) (日)

Fit 2

Operator		Approx. w.f. (MeV)	Exact w.f. (MeV)
$O_1 = N_c 1$	$c_1 =$	484 ± 4	484 ± 4
$O_2 = \ell^i s^i$	$c_2 =$	3 ± 15	3 ± 15
$O_{3}^{\prime} = \frac{1}{N_{c}} \left(2s^{i}S_{c}^{i} + S_{c}^{i}S_{c}^{i} + \frac{3}{4} \right)$	$c'_3 =$	150 ± 11	150 ± 11
$O_{5}^{\prime} = \frac{1}{N_{c}} \left(2t^{a}T_{c}^{a} + T_{c}^{a}T_{c}^{a} + \frac{3}{4} \right)$	$c'_5 =$	139 ± 27	139 ± 27
$\chi^2_{ m dof}$		1.04	1.04

★ロト ★問 と ★注 と ★注 と 一注

\Rightarrow No decoupling of the wave function and the operators S^i, T^a, G^{ia} Wave function [12]

 $|\ell S(\lambda \mu)YII_3; JJ_3\rangle = \sum_{m_\ell, S_3} \begin{pmatrix} \ell & S \\ m_\ell & S_3 \end{pmatrix} |[N_c - 1, 1]SS_3(\lambda \mu)YII_3\rangle |[N_c - 1, 1]\ell m_\ell\rangle$

Generators : Wigner-Eckart theorem for SU(6)

$$\begin{split} \langle [N_{c}-1,1](\lambda'\mu')Y'I'I'_{3}S'S'_{3}|E^{ia}|[N_{c}-1,1](\lambda\mu)YII_{3}SS_{3}\rangle &= \\ \sqrt{C^{[N_{c}-1,1]}(\mathrm{SU}(6))} \left(\begin{array}{cc} S & S^{i} \\ S_{3} & S^{i}_{3} \end{array} \middle| \begin{array}{c} S' \\ S'_{3} \end{array} \right) \left(\begin{array}{cc} I & I^{a} \\ I_{3} & I^{a}_{3} \end{array} \middle| \begin{array}{c} I' \\ I'_{3} \end{array} \right) \\ &\times \sum_{\rho=1,2} \left(\begin{array}{c} (\lambda\mu) & (\lambda^{a}\mu^{a}) \\ YI & Y^{a}I^{a} \end{array} \right) \left(\begin{array}{c} (\lambda'\mu') \\ Y'I' \end{array} \right)_{\rho} \left(\begin{array}{c} [N_{c}-1,1] & [21^{4}] \\ (\lambda\mu)S & (\lambda^{a}\mu^{a})S^{i} \end{array} \right) \left(\begin{array}{c} [N_{c}-1,1] \\ (\lambda'\mu')S' \end{array} \right)_{\rho} \end{split}$$

where $C^{[N_c-1,1]}(SU(6)) = N_c(5N_c+18)/12$ is the SU(6) Casimir operator for irrep $[N_c-1,1]$

$$E^{i} = \frac{S^{i}}{\sqrt{3}}; \quad E^{a} = \frac{T^{a}}{\sqrt{2}}; \quad E^{ia} = \sqrt{2}G^{ia}$$

[12] N. Matagne and F.L. Stancu, Phys. Rev. D83, 056007 (2011). 🗆 🔪 🚓 👘 🖉 🖉 🖉 🖓 🖓

Isoscalar factors for the ⁴8 states

			$([N_c - 1, 1], [21^4], [N_c - 1, 1])$
$(\lambda_1 \mu_1) S_1$	$(\lambda_2 \mu_2)S_2$	ρ	$\left \begin{array}{c} \left(\begin{array}{c} 1 \\ (\lambda_1 \mu_1) S_1 \end{array} \right) \left(\lambda_2 \mu_2 \right) S_2 \end{array} \right \left(\begin{array}{c} 1 \\ (\lambda - 2, \mu + 1) S \end{array} \right)_{\rho}$
$(\lambda - 2, \mu + 1)S$	(11)1	1	$[N_c(4S-3)+6S]\sqrt{\frac{2(S+1)}{S[N_c(N_c+6)+12(S-1)S]N_c(5N_c+18)}}$
$(\lambda - 2, \mu + 1)S$	(11)1	2	$-\frac{N_c - 2S}{S} \sqrt{\frac{3(S-1)(S+1)(N_c - 2S+6)(N_c + 2S)(N_c + 2S+4)}{2(N_c - 2S+2)[N_c(N_c + 6) + 12(S-1)S]N_c(5N_c + 18)}}$
$(\lambda \mu)S + 1$	(11)1	/	$-\sqrt{\frac{3}{2}}\sqrt{\frac{2S+3}{2S+1}}\sqrt{\frac{(N_c-2S)(N_c+2S+4)}{N_c(5N_c+18)}}$
$(\lambda \mu)S$	(11)1	/	$-\frac{1}{S}\sqrt{\frac{3}{2}}\sqrt{\frac{(N_c-2S)(N_c+2S+4)}{(N_c+2S+2)(5N_c+18)}}$
$(\lambda \mu)S - 1$	(11)1	/	$\frac{N_c + 4S^2}{S} \sqrt{\frac{3(N_c + 2S + 4)}{2(2S - 1)(2S + 1)(N_c + 2S + 2)N_c(5N_c + 18)}}$
$(\lambda-2,\mu+1)S-1$	(11)1	1	$\frac{3\sqrt{2(S-1)(N_c+2S)}}{\sqrt{S[N_c(N_c+6)+12(S-1)S](5N_c+18)}}$
$(\lambda-2,\mu+1)S-1$	(11)1	2	$-\frac{N_c}{S}\sqrt{\frac{3(N_c-2S+6)(N_c+2S+4)}{2(N_c-2S+2)[N_c(N_c+6)+12(S-1)S](5N_c+18)}}$
$(\lambda - 1, \mu - 1)S$	(11)1	/	$-2\sqrt{\frac{3(S+1)(N_c-2S)(N_c+2S)}{S(N_c-2S+2)(N_c+2S+2)N_c(5N_c+18)}}$
$(\lambda-1,\mu-1)S-1$	(11)1	/	$2(S-1)\sqrt{\frac{3(N_c-2S)(N_c+2S)}{S(2S-1)(N_c-2S+2)(N_c+2S+2)N_c(5N_c+18)}}$
$(\lambda - 3, \mu)S - 1$	(11)1	/	$-2\sqrt{\frac{3(S-1)(N_c+2S-2)}{(2S-1)(N_c-2S+4)N_c(5N_c+18)}}$
$(\lambda-4,\mu+2)S-1$	(11)1	/	$-\sqrt{\frac{3}{2}}\sqrt{\frac{2S-3}{2S-1}}\sqrt{\frac{(N_c+2S)(N_c-2S+2)(N_c-2S+6)}{(N_c-2S+4)N_c(5N_c+18)}}$
$(\lambda - 2, \mu + 1)S$	(11)0	1	$\sqrt{\frac{N_c(N_c+6)+12(S-1)S}{2N_c(5N_c+18)}}$
$(\lambda - 2, \mu + 1)S$	(11)0	2	0
$(\lambda - 2, \mu + 1)S$	(00)1	/	$\sqrt{\frac{4S(S+1)}{N_c(5N_c+18)}}$

イロン イロン イヨン イヨン

$$M_{[\mathbf{70},1^-]} = \sum_i c_i O_i + \sum_j d_j B_j$$

Operator	Fit 1 (MeV)	Fit 2 (MeV)	Fit 3 (MeV)
$O_1 = N_c \mathbb{1}$	489 ± 4	492 ± 4	492 ± 4
$O_2 = \ell^i s^i$	24 ± 6	6 ± 6	6 ± 5
$O_3 = \frac{1}{N_c} S^i S^i$	129 ± 10	123 ± 10	123 ± 10
$O_4 = \frac{1}{N_c} \left[T^a T^a - \frac{1}{12} N_c (N_c + 6) \right]$	145 ± 16	134 ± 16	135 ± 16
$O_5 = \frac{3}{N_c} L^i T^a G^{ia}$	-19 ± 7	3 ± 7	4 ± 3
$O_6 = \frac{15}{N_c} L^{(2)ij} G^{ia} G^{ja}$	9 ± 1	9 ± 1	9 ± 1
$O_7 = \frac{1}{N_c^2} L^i G^{ja} \{ S^j, G^{ia} \}$	129 ± 33	6 ± 33	
$B_1 = -S$	138 ± 8	138 ± 8	137 ± 8
$B_2 = \frac{1}{N_c} \sum_{i=1}^{3} T^i T^i - O_4$	-59 ± 18	-40 ± 18	-40 ± 18
$\chi^2_{ m dof}$	1.7	0.9	0.84

- Fit 1 : $M(\Lambda(1405)) = 1407$ MeV
- Fit 2-3 : $M(\Lambda(1405)) = 1500 \text{ MeV}$
- Important role of O_7 in Fit 1 ($\chi^2_{dof} = 2.95$ without it)
- O_2 and O_7 contribute to the $\Lambda(1405) \Lambda(1520)$ splitting
- Spin operator O_3 dominant for N
- Flavor operator O_4 dominant for Δ

イロン イロン イヨン イヨン

Results for Fit 1

	Part. contrib. (MeV)									Total (MeV)	Exp. (MeV)	Name, status
	$c_1 O_1$	c_2O_2	c_3O_3	c_4O_4	c_5O_5	c_6O_6	c_7O_7	d_1B_1	d_2B_2			
$N_{\frac{1}{2}}$	1467	-8	32	36	19	0	-31	0	0	1499 ± 10	1538 ± 18	$S_{11}(1535)^{****}$
$\Lambda_{\frac{1}{2}}$								138	15	1668 ± 9	1670 ± 10	$S_{01}(1670)^{****}$
$\Sigma_{\frac{1}{2}}$								138	-25	1628 ± 10		
$\Xi_{\frac{1}{2}}$								276	0	1791 ± 13		
$N_{\frac{3}{2}}$	1467	4	32	36	-10	0	16	0	0	1542 ± 10	1523 ± 8	$D_{13}(1520)^{****}$
$\Lambda_{\frac{3}{2}}$								138	15	1698 ± 8	1690 ± 5	$D_{03}(1690)^{****}$
$\Sigma_{\frac{3}{2}}$								138	-25	1658 ± 9	1675 ± 10	$D_{13}(1670)^{****}$
$\Xi_{\frac{3}{2}}$								276	0	1821 ± 11	1823 ± 5	$D_{13}(1820)^{***}$
$N'_{\frac{1}{n}}$	1467	-20	162	36	48	-18	42	0	0	1648 ± 11	1660 ± 20	$S_{11}(1650)^{****}$
$\Lambda'_{\frac{1}{n}}$								138	15	1784 ± 16	1785 ± 65	$S_{01}(1800)^{***}$
$\Sigma'_{\frac{1}{2}}$								138	-25	1745 ± 17	1765 ± 35	$S_{11}(1750)^{***}$
$\Xi_{\frac{1}{2}}$								276	0	1907 ± 20		
$N'_{\frac{3}{2}}$	1467	-8	162	36	19	15	-17	0	0	1675 ± 10	1700 ± 50	$D_{13}(1700)^{***}$
$\Lambda'_{\frac{3}{2}}$								138	15	1826 ± 12		
$\Sigma'_{\frac{3}{2}}$								138	-25	1787 ± 13		
$\Xi_{\frac{3}{2}}$								276	0	1949 ± 16		
$N_{\frac{5}{2}}$	1467	12	162	36	-29	-4	25	0	0	1669 ± 10	1678 ± 8	$D_{15}(1675)^{****}$
$\Lambda_{\frac{5}{2}}$								138	15	1822 ± 10	1820 ± 10	$D_{05}(1830)^{****}$
$\Sigma_{\frac{5}{2}}$								138	-25	1782 ± 11	1775 ± 5	$D_{15}(1775)^{****}$
$\Xi_{\frac{5}{2}}$								276	0	1945 ± 14		

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 100

Excited States II

			Pa	art. co	ontrib.	(MeV))			Total (MeV)	Exp. (MeV)	Name, status
	c_1O_1	c_2O_2	c_3O_3	c_4O_4	c_5O_5	c_6O_6	c_7O_7	d_1B_1	d_2B_2			
$\Delta_{\frac{1}{2}}$	1467	8	32	181	38	0	-24	0	0	1702 ± 18	1645 ± 30	$S_{31}(1620)^{****}$
$\Sigma_{\frac{1}{2}}^{\prime\prime}$								138	34	1875 ± 16		
$\Xi_{\frac{1}{2}}''$								276	59	2037 ± 22		
$\Omega_{\frac{1}{2}}$								413	74	2190 ± 29		
$\Delta_{\frac{3}{2}}$	1467	-4	32	181	-19	0	12	0	0	1668 ± 20	1720 ± 50	$D_{33}(1700)^{****}$
$\Sigma_{\frac{3}{2}}^{\prime\prime}$								138	34	1841 ± 16		
Ξ.								276	59	2003 ± 21		
$\Omega_{\frac{3}{2}}^2$								413	74	2156 ± 27		
$\Lambda_{\frac{1}{2}}^{\prime\prime}$	1467	-24	32	-108	0	0	-38	138	-44	1421 ± 14	1407 ± 4	$S_{01}(1405)^{****}$
$\Lambda_{\frac{3}{2}}^{\prime\prime}$	1467	12	32	-108	0	0	19	138	-44	1515 ± 14	1520 ± 1	$D_{03}(1520)^{****}$
$N_{1/2} - N_{1/2}'$	0	-8	0	0	-10	-55	18	0	0	-55		
$N_{3/2} - N_{3/2}'$	0	-12	0	0	-15	17	28	0	0	18		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Status of $\Lambda(1405)$

- Negative parity baryon resonance with $J=1/2, I=0, \mathcal{S}=-1$
- Difficult to be described by constituent quark models (mass too large, small mass difference with spin-orbit partner $(\Lambda(1520))$
- Mass well described in the first approach, $S_c = 0$ contributions \Rightarrow Vanishing Spin-Spin contributions
- Not so well described in our picture, S_c = 1 contributions also included
 ⇒ Nonvanishing Spin-Spin contributions
- $\Lambda(1405)$, qqq state? Meson-Baryon "molecule" nature suggested by study of N_c dependence of decay widths [13]

[13] T. Hyodo, D. Jido, L. Roca, Phys. Rev. D77, 056010 (2008).

Conclusions

- $[\mathbf{70}, 1^-]$ baryon masses
- Two complementary approaches :
 - Core + excited quark ignores isospin terms
 - Exact wave function includes isospin term \Rightarrow Contribution to Δ similar to that of spin terms in N
 - \Rightarrow Flavor dependent interactions are required
- Status of $\Lambda(1405)$ still uncertain
 - \Rightarrow more studies in large N_c
- Analysis of multiplets higher than $[\mathbf{70}, 1^-]$ is necessary (work in progress)